Catalase HPII of Escherichia coli catalyzes the conversion of protoheme to cis-heme d.

نویسندگان

  • P C Loewen
  • J Switala
  • I von Ossowski
  • A Hillar
  • A Christie
  • B Tattrie
  • P Nicholls
چکیده

Catalase HPII from aerobically grown Escherichia coli normally contains heme d but cultures grown with poor or no aeration produce HPII containing a mixture of heme d and protoheme IX. The protoheme component of HPII from anaerobically grown cells is converted into heme d during treatment of the purified enzyme with hydrogen peroxide. It is concluded that heme d found in catalase HPII is formed by the cis-hydroxylation of protoheme in a reaction catalyzed by catalase HPII using hydrogen peroxide as a substrate. The distal His128 residue of HPII is absolutely required for the protoheme to heme d conversion. Two mutant enzymes, Ala128 and Asn128, are catalytically inactive and contain only protoheme, which is unaffected by hydrogen peroxide treatment. The Asn201 residue is not an absolute requirement for heme conversion. The mutant enzyme Ala201 contains predominantly heme d and is partially active. However, insertion of a histidyl residue to give the His201 enzyme interferes with the heme conversion reaction. This mutant form is isolated as a protoheme enzyme with limited activity, and a reversible conversion to a heme d-like species occurs in vitro in the presence of continuously generated hydrogen peroxide.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase.

Wild-type Escherichia coli HPII catalase (heme d containing) has 15% the activity of beef liver enzyme per heme. The rate constant for compound I formation with H2O2 is 1.3 x 10(6) M(-1) s(-1). HPII compound I reacts with H2O2 to form O2 with a rate constant of 1.8 x 10(6) M(-1) s(-1). Forty percent of HPII hemes are in the compound I state during turnover. Compound I is reduced by ethanol and ...

متن کامل

Structure of the heme d of Penicillium vitale and Escherichia coli catalases.

A heme d prosthetic group with the configuration of a cis-hydroxychlorin gamma-spirolactone has been found in the crystal structures of Penicillium vitale catalase and Escherichia coli catalase hydroperoxidase II (HPII). The absolute stereochemistry of the two heme d chiral carbon atoms has been shown to be identical. For both catalases the heme d is rotated 180 degrees about the axis defined b...

متن کامل

Crystal structure of catalase HPII from Escherichia coli.

BACKGROUND Catalase is a ubiquitous enzyme present in both the prokaryotic and eukaryotic cells of aerobic organisms. It serves, in part, to protect the cell from the toxic effects of small peroxides. Escherichia coli produces two catalases, HPI and HPII, that are quite distinct from other catalases in physical structure and catalytic properties. HPII, studied in this work, is encoded by the ka...

متن کامل

Identification of a novel bond between a histidine and the essential tyrosine in catalase HPII of Escherichia coli.

A bond between the N delta of the imidazole ring of His 392 and the C beta of the essential Tyr 415 has been found in the refined crystal structure at 1.9 A resolution of catalase HPII of Escherichia coli. This novel type of covalent linkage is clearly defined in the electron density map of HPII and is confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis of trypti...

متن کامل

Mutants that alter the covalent structure of catalase hydroperoxidase II from Escherichia coli.

The three-dimensional structures of two HPII variants, V169C and H392Q, have been determined at resolutions of 1.8 and 2.1 A, respectively. The V169C variant contains a new type of covalent bond between the sulfur atom of Cys(169) and a carbon atom on the imidazole ring of the essential His(128). This variant enzyme has only residual catalytic activity and contains heme b. The chain of water mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 32 38  شماره 

صفحات  -

تاریخ انتشار 1993